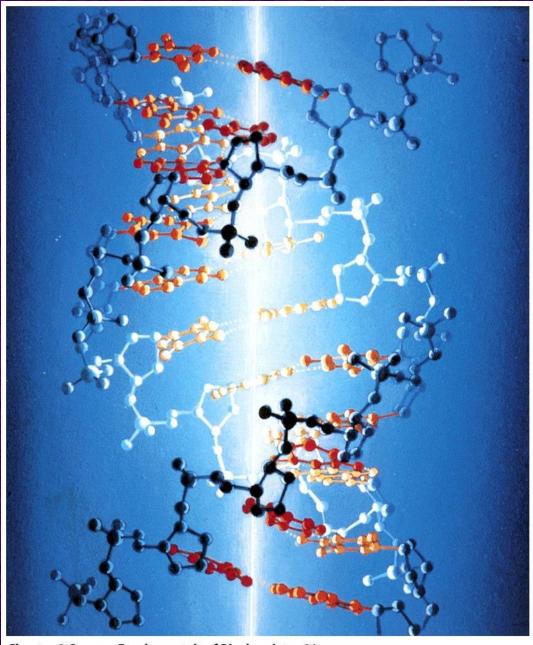
ADN y ARN: LAS MOLECULAS DE LA HERENCIA

Forman parte del tercer tipo de estructura celular que encontramos: el Núcleo celular, desde el exterior al interior celular.

Contiene los ácidos nucleicos, descubiertos por Friedrich Miescher en 1869 que los aisló desde núcleos, como una sustancia ácida a la que llamó nucleína.


Existen dos tipos de ácidos nucleicos ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico).

ADN: LA MOLÉCULA PORTADORA DE LA INFORMACION GENÉTICA

El ADN es un biopolímero macromolecular muy largo y filamentoso, ubicado en el núcleo.

Químicamente esta constituido por Desoxiribonucleótidos unidos por uniones ésteres fosfóricas 3 → 5.

Las bases nitrogenadas son las portadoras de la información genética, en tanto que los grupos de pentosa y fosfato tienen un papel estructural, que se caracteriza por una doble hélice.

Chapter 3 Opener Fundamentals of Biochemistry, 2/e

ARN

Son las moléculas encargadas de la transmisión genética y de la traducción para la biosíntesis de las proteínas.

Se diferencian, por la función, el tamaño y la cantidad de nucleótidos en: (80%) de ARNr ribosomales, (5%) ARNm mensajeros y (15%) de ARNt de transferencia y ARNnp nuclear pequeño.

ALGUNOS VIRUS DE PLANTAS Y los VIRUS QUE PRODUCEN ENFERMEDADES EN ANIMALES Y HUMANOS, UTILIZAN RNA COMO MATERIAL GENÉTICO

ARN mensajero

•El ARNm se sintetiza en el núcleo de la célula, y su secuencia de bases es complementaria de un fragmento de una de las cadenas de ADN.

Actúa como intermediario en el traslado de la información genética desde el núcleo hasta el citoplasma.

Poco después de su síntesis sale del núcleo a través de los poros nucleares asociándose a los ribosomas donde actúa como matriz o molde que ordena los aminoácidos en la cadena proteica.

Su vida es muy corta: una vez cumplida su misión, se destruye.

ARNt

- •El ARN de transferencia existe en forma de moléculas relativamente pequeñas.
- •La única hebra de la que consta la molécula puede llegar a presentar zonas de estructura secundaria gracias a los enlaces por puente de hidrógeno que se forman entre bases complementarias, lo que da lugar a que se formen una serie de brazos, bucles o asas.
- •Su función es la de captar aminoácidos en el citoplasma uniéndose a ellos y transportándolos hasta los ribosomas, colocándolos en el lugar adecuado que indica la secuencia de nucleótidos del ARN mensajero para llegar a la síntesis de una cadena polipeptídica determinada y por lo tanto, a la síntesis de una proteína.

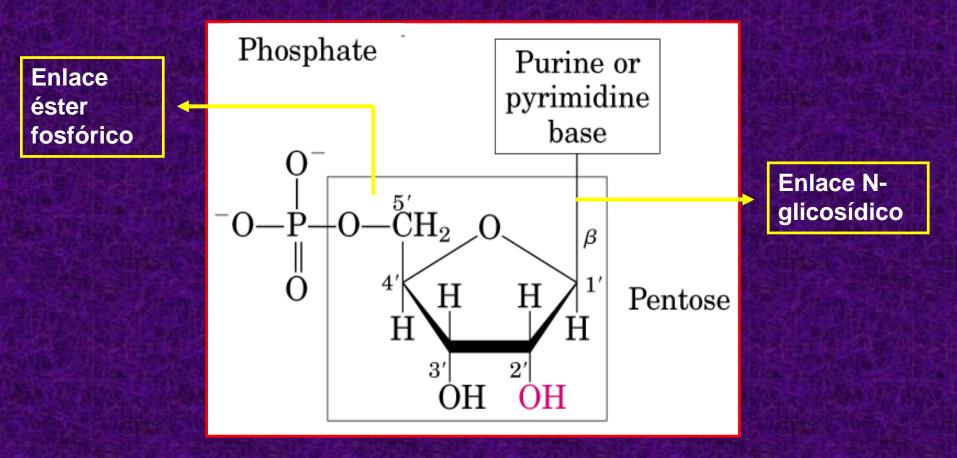
ARNr

- •El RNA ribosómico es el más abundante (80 por ciento del total del ARN), se encuentra en los ribosomas y forma parte de ellos, aunque también existen proteínas ribosómicas.
- •El ARN ribosómico recién sintetizado es empaquetado inmediatamente con proteínas ribosómicas, dando lugar a las subunidades del ribosoma.

Los ácidos nucleicos: ADN y ARN son macromoléculas polinucleotídicas

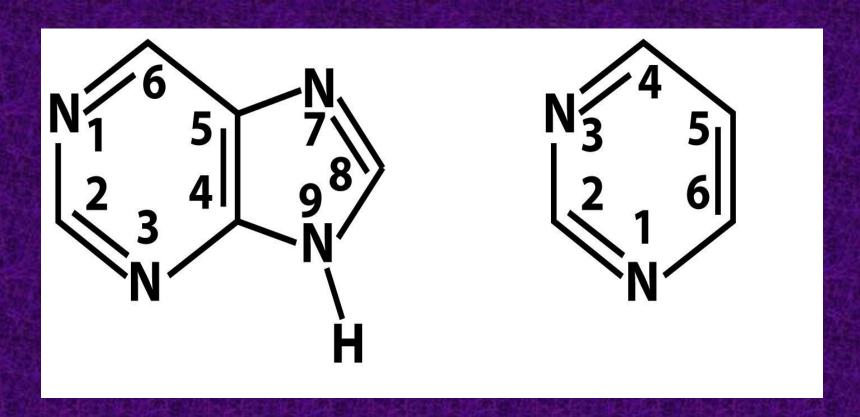
ACIDOS NUCLEICOS NUCLEÓTIDOS Ác FOSFÓRICO **NUCLEÓSIDO BASES PURICAS O PIRIMIDINICAS** D-Ribosa o D-Desoxirribosa

Se llama nucleósido a la unión de una "osa" (ribosa o desoxirribosa) con base nitrogenada con enlace N-glicosídico.


PENTOSA

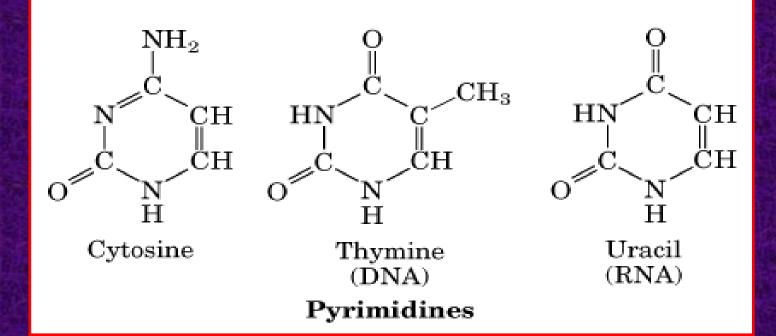
La esterificación de un nucleósido con un ácido fosfórico es un nucleótido.

ESTRUCTURA DE LOS NUCLEOTIDOS


Nucleósido = Pentosa + Base nitrogenada

Nucleótidos = pentosa + base nitrogenada + fosfato

PURINA


PIRIMIDINA

Adenine

Guanine

Purines

Purines

Guanine

Adenine

Marcado carácter aromático.

Resisten la oxidación.

Absorben en el UV, propiedad utilizada para su caracterización.

Presentan formas tautoméricas: en donde la forma ceto y enólica están en equilibrio.

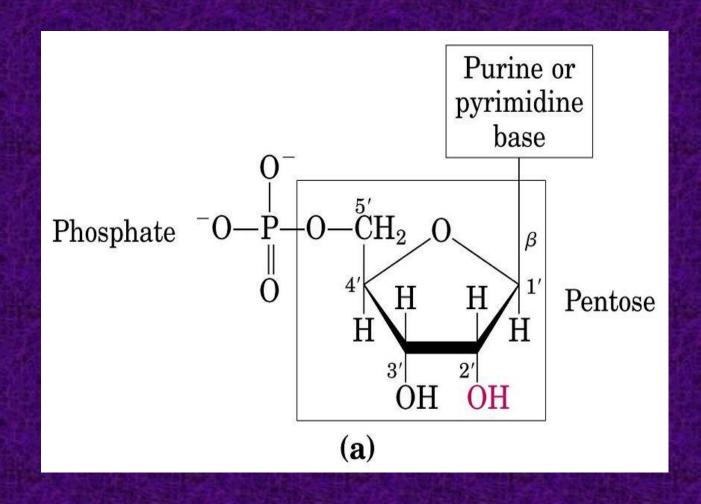
Forma ceto

Formas enol

A pH 7.0 la forma lactámica (forma ceto) es la predominante

Pentosas de los nucleósidos y nucleótidos:

D- ribosa presente en ARN D-2-desoxirribosa en ADN

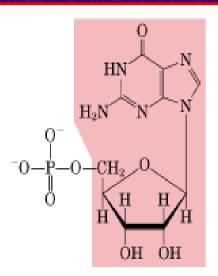

Enlaces N-glicosídicos en los nucleósidos:

bases púricas: unión entre N9 y C1

bases pirimidínicas: unión entre N1 y C1

Ribonucleósidos					
Nombre	Base	OSA			
	nitrogenada				
Adenosina	Adenina				
Guanosina	Guanina	D-Ribosa			
Citidina	Citosina				
Uridina	Uracilo				
Desoxirribonucleósidos					
Desoxiadenosina	Adenina				
Desoguanidina	Guanina	D-2-desoxirribosa			
Desoxicitidina	Citosina				
Desoxitimidina	Timina				

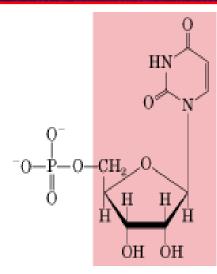
- Nucleótidos: nucleósido + acido fosfórico
- Unidos por enlace éster al C5 de la pentosa


RIBONUCLEOTIDOS

Nucleotide: Adenylate (adenosine

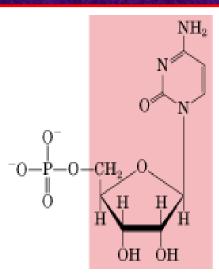
5'-monophosphate)

Symbols: A, AMP


Nucleoside: Adenosine

Guanylate (guanosine 5'-monophosphate)

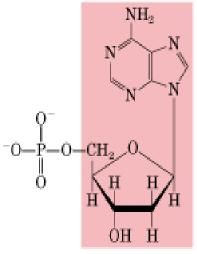
G, GMP


Guanosine

Uridylate (uridine 5'-monophosphate)

U, UMP

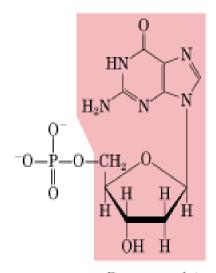
Uridine



Cytidylate (cytidine 5'-monophosphate)

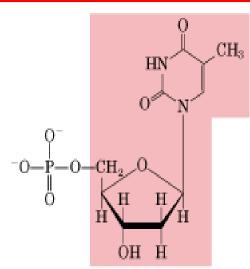
C, CMP

Cytidine


DESOXIRRIBONUCLEOTIDOS

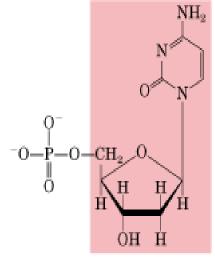
Nucleotide: Deoxyadenylate (deoxyadenosine 5'-monophosphate)

Symbols: A, dA, dAMP


Nucleoside: Deoxyadenosine

Deoxyguanylate (deoxyguanosine 5'-monophosphate)

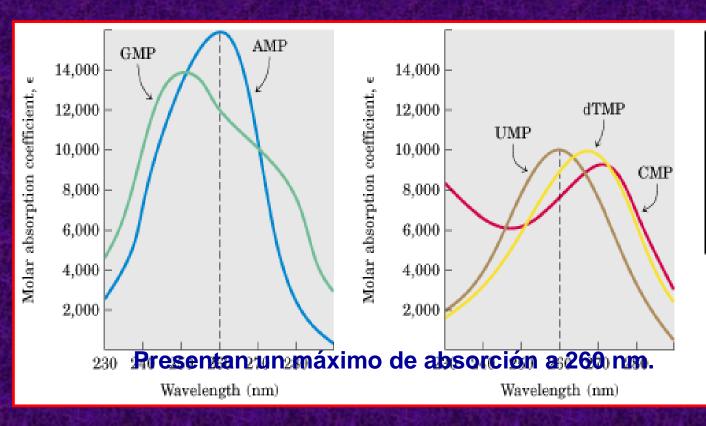
G, dG, dGMP


Deoxyguanosine

Deoxythymidylate (deoxythymidine 5'-monophosphate)

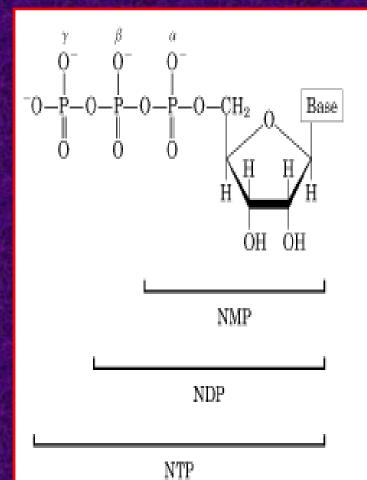
T, dT, dTMP

Deoxythymidine



Deoxycytidylate (deoxycytidine 5'-monophosphate)

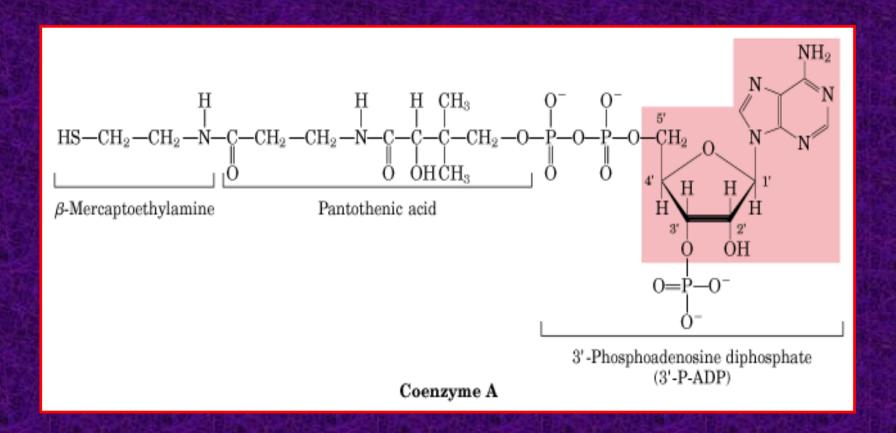
C, dC, dCMP


Deoxycytidine

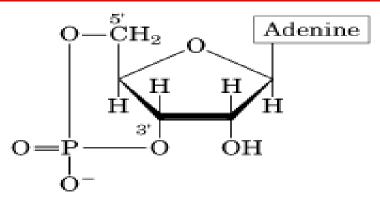
ESPECTRO DE ABSORCIÓN DE LOS NUCLEOTIDOS

$\begin{array}{l} \text{Molar absorption} \\ \text{coefficient at 260 nm,} \\ \epsilon_{280} (\text{M}^{-1} \text{cm}^{-1}) \end{array}$		
AMP	15,400	
GMP	11,700	
CMP	7,500	
UMP	9,900	
dTMP	9,200	

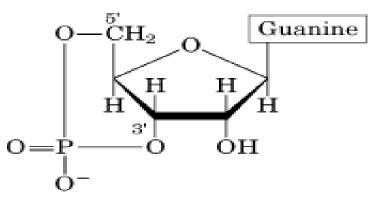
Los nucleótidos almacenan energía química en la célula


Abbreviations of ribonucleoside 5'-phosphates			
Base	Mono-	Di- (Tn
Adenine	AMP	ADP	ATP
Guanine	GMP	GDP	GTP
Cytosine	CMP	CDP	CTP
Uracil	UMP	UDP	UTP

Abbreviations of deoxyribonucleoside 5'-phosphates			
Base	Mono-	Di-	Tri-
Adenine	dAMP	dADP	dATP
Guanine	dGMP	dGDP	dGTP
Cytosine	dCMP	dCDP	dCTP
Thymine	dTMP	dTDP	dTTP

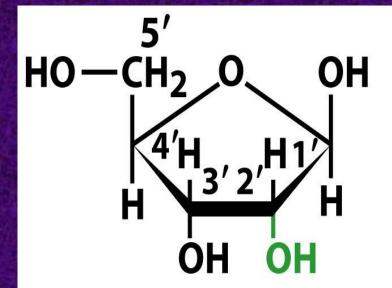

Algunos nucleótidos de adenina son componentes de cofactores enzimáticos

El NAD y el FAD actúan como coenzimas en reacciones de oxido-reducción


Otros actúan como transportadores de grupos acilo: Coenzima A

Otros actúan como segundos mensajeros. AMPc y GMPc

Adenosine 3',5'-cyclic monophosphate (cyclic AMP; cAMP)



Guanosine 3',5'-cyclic monophosphate (cyclic GMP; cGMP)

Table 3-1 Names and Abbreviations of Nucleic Acid Bases, Nucleosides, and Nucleotides				
Base Formula	Base $(X = H)$	Nucleoside $(X = ribose^a)$	Nucleotide ^b $(X = ribose phosphatea)$	
NH ₂			1 1 /	
N N N X	Adenine Ade A	Adenosine Ado A	Adenylic acid Adenosine monophosphate AMP	
H_{2N} N N N N N N	Guanine	Guanosine	Guanylic acid	
	Gua	Guo	Guanosine monophosphate	
	G	G	GMP	
NH ₂	Cytosine	Cytidine	Cytidylic acid	
	Cyt	Cyd	Cytidine monophosphate	
	C	C	CMP	
H N N N N N N N N N N N N N N N N N N N	Uracil	Uridine	Uridylic acid	
	Ura	Urd	Uridine monophosphate	
	U	U	UMP	
H CH ₃ O CH ₃ dX	Thymine	Deoxythymidine	Deoxythymidylic acid	
	Thy	dThd	Deoxythymidine monophosphate	
	T	dT	dTMP	

[&]quot;The presence of a 2'-deoxyribose unit in place of ribose, as occurs in DNA, is implied by the prefixes "deoxy" or "d." For example, the deoxynucleoside of adenine is deoxyadenosine or dA. However, for thymine-containing residues, which rarely occur in RNA, the prefix is redundant and may be dropped. The presence of a ribose unit may be explicitly implied by the prefix "ribo."

^bThe position of the phosphate group in a nucleotide may be explicitly specified as in, for example, 3'-AMP and 5'-GMP.

Ribose

HO — CH₂ O OH 4'H_{3'2'}H 1' H OH H

Deoxyribose

Unnumbered figure pg 42 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

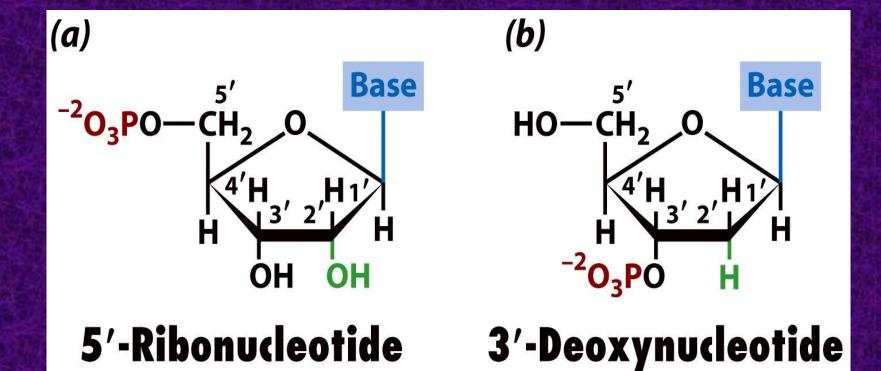
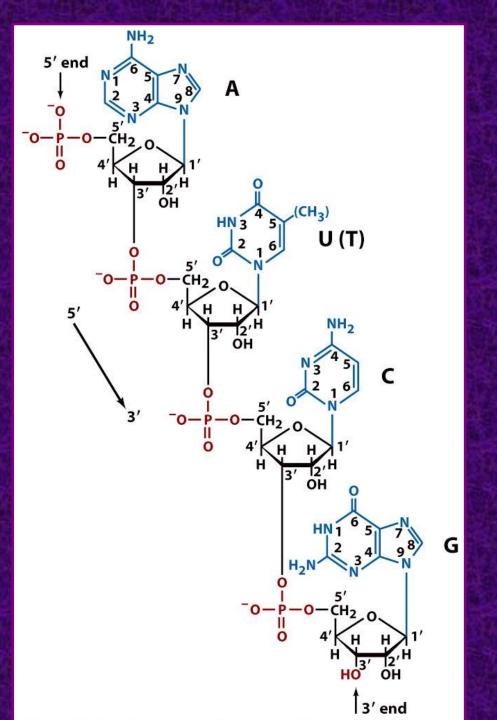



Figure 3-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

(a)
$$H \downarrow O \downarrow CH_3$$

$$O \downarrow N \downarrow H$$

Thymine (keto *or* lactam form) Thymine (enol *or* lactim form)

Guanine (keto *or* lactam form) Guanine (enol *or* lactim form)

Figure 3-4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

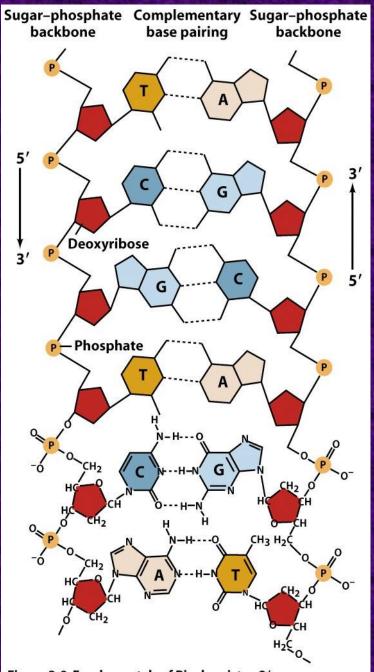


Figure 3-8 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

ADN y ARN: LAS MOLECULAS DE LA HERENCIA

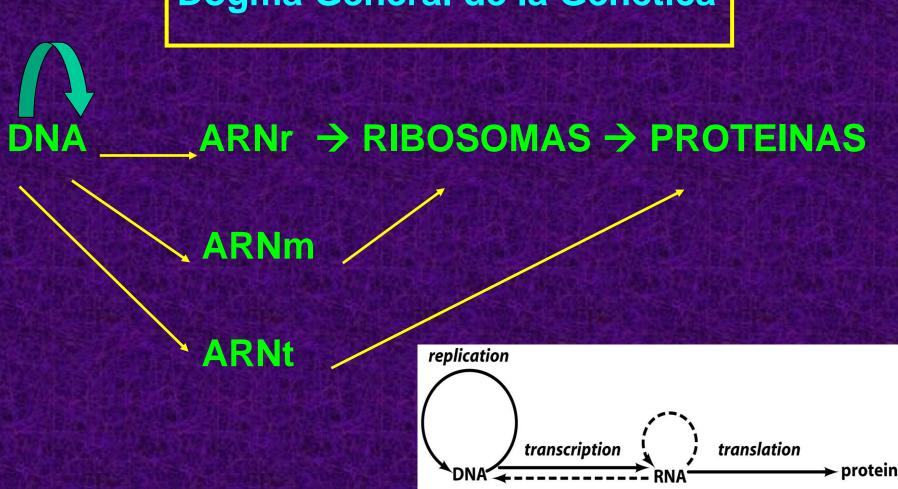
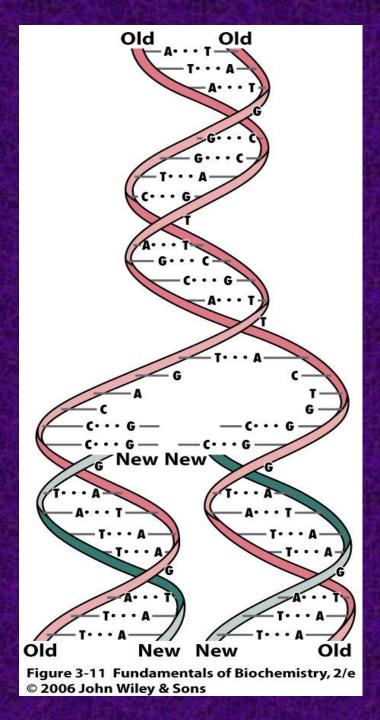


Figure 3-13 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

En el Dogma General se definen:

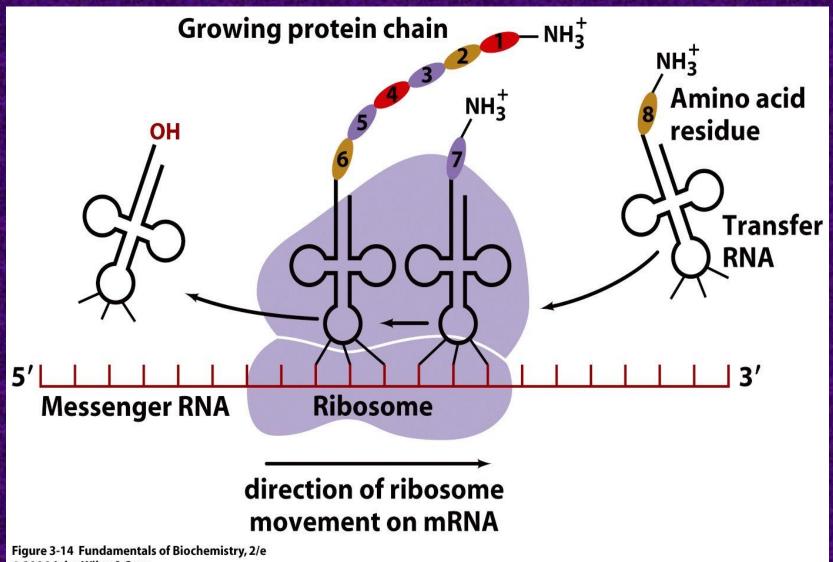
Replicación

Este proceso consiste en la copia total del DNA sobre si mismo.


Transcripción

Este proceso consiste en la copia parcial del DNA en los distintos tipos de RNA: ribosomal (RNAr), mensajero (RNAm), transfer (RNAt) y RNA pn (pequeño nuclear).

Traducción


Este proceso consiste en la lectura de los RNAm en el Ribosoma (por los RNAr) y lectura de los codones por los RNAm por los anticodones de los RNA de transferencia, ordenando los AA.

REPLICACION SEMICONSERVATIVA

TRANSCRIPCION Y TRADUCCIÓN

Figure 3-12 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

© 2006 John Wiley & Sons