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Abstract

The aim with this tutorial is to give a simple and easily understandable introduction to experimental design and optimiza-
tion. The screening methods described in the paper are factorial and fractional factorial designs. Identification of significant
variables are performed by normal distribution plots as well as by confidence intervals. Refinements of the models are also
discussed. For optimization, the simplex method, central composite designs and the Doehlert design are discussed. The paper
also gives an introduction to mixture designs. The paper contains 14 hands-on examples and if anyone needs the answers on
these it is just to contact the authors. q 1998 Elsevier Science B.V. All rights reserved.

Keywords: experimental design; factorial design; fractional factorial design; response surface optimization; simplex; Doehlert design; mix-
ture design

Contents

1. Field of application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Definition of aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4. Empirical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5. Screening experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.1. Early words of advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.1.1. Hints on variable selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.1.2. Select a design and plan the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.2. Factorial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2.1. Signs of interaction effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

) Corresponding author

0169-7439r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII: S0169-7439 98 00065-3



( )T. Lundstedt et al.rChemometrics and Intelligent Laboratory Systems 42 1998 3–404

5.3. Fractional factorial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3.1. The principals for constructing fractional factorial designs . . . . . . . . . . . . . . . . . . . . . 12
5.3.2. Confounding and aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3.3. The generators of a fractional factorial design . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.4. More generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.5. Resolution of a fractional factorial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.6. How to separate confounded effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.7. All experiments are useful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4. Evaluation of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.1. Normal distribution plots to identify significant effects . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.2. Evaluation of model fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.3. Model refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6. Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1. Simplex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1.1. Rules for a simplex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.2. Calculation of the experimental settings for a new experiment in the simplex . . . . . . . . . . . 30

6.2. Response surface methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2.1. Doehlert design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2.2. Central composite design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7. Mixture designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1. Factors in mixture experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.1.1. Mixture factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.2. Filler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.3. Constant mixture factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.4. Process factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2. Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3. The experimental region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4. Pseudo component transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5. Choice of design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8. Additional references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.1. Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2. Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1. Field of application

Experimental design and optimization are tools that are used to systematically examine different types of
problems that arise within, e.g., research, development and production. It is obvious that if experiments are per-
formed randomly the result obtained will also be random. Therefore, it is a necessity to plan the experiments in
such a way that the interesting information will be obtained.

In the following pages, experimental design and optimization are presented to give the experimentalist useful
tools in the real experimental situation, as well as the necessary theoretical background.

2. Definition of aim

What is the aim?

When the aim is well defined the problem should be analysed with the help of the following questions:
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What is known? What is unknown? What do we need to investigate?

To be able to plan the experiments in a rational way the problem has to be concrete.

Which experimental Õariables can be inÕestigated? Which responses can be measured?

When the experimental variables and the responses have been defined the experiments can be planned and per-
formed in such a way that a maximum of information is gained from a minimum of experiments.

3. Terminology

To simplify the communication a few different terms are introduced and defined. Others will be defined when
they are needed.

ŽExperimental domain the experimental ‘area’ that is investigated defined by the variation of the
.experimental variables

Factors experimental variables that can be changed independently of each other
Independent Õariables same as factors
Continuous Õariables independent variables that can be changed continuously
Discrete Õariables independent variables that are changed step-wise, e.g., type of solvent

Ž .Responses the measured value of the result s from experiments
Residual the difference between the calculated and the experimental result

4. Empirical models

It is reasonable to assume that the outcome of an experiment is dependent on the experimental conditions.
This means that the result can be described as a function based on the experimental variables,

ys f xŽ .
Ž .The function f x is approximated by a polynomial function and represents a good description of the relation-

ship between the experimental variables and the responses within a limited experimental domain. Three types of
polynomial models will be discussed and exemplified with two variables, x and x .1 2

The simplest polynomial model contains only linear terms and describes only the linear relationship between
the experimental variables and the responses. In a linear model, the two variables x and x are expressed as:1 2

ysb qb x qb x q residual.0 1 1 2 2

The next level of polynomial models contains additional terms that describe the interaction between different
experimental variables. Thus, a second order interaction model contains the following terms:

ysb qb x qb x qb x x q residual0 1 1 2 2 12 1 2

The two models above are mainly used to investigate the experimental system, i.e., with screening studies, ro-
bustness tests or similar.

Ž .To be able to determine an optimum maximum or minimum quadratic terms have to be introduced in the
model. By introducing these terms in the model, it is possible to determine non-linear relationships between the
experimental variables and responses. The polynomial function below describes a quadratic model with two
variables:

ysb qb x qb x qb x 2 qb x 2 qb x x q residual0 1 1 2 2 11 1 22 2 12 1 2

Ž .The polynomial functions described above contain a number of unknown parameters b , b , b , etc. that are0 1 2

to be determined. For the different models different types of experimental designs are needed.
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5. Screening experiments

In any experimental procedure, several experimental variables or factors may influence the result. A screen-
ing experiment is performed in order to determine the experimental variables and interactions that have signifi-
cant influence on the result, measured in one or several responses.

5.1. Early words of adÕice

Ø Specify the problem:
Review the whole procedure—different moments, critical steps, raw material, equipment, etc. Try to get a
holistic view of the problem.

Ž .Ø Define the response s :
Ž .Which response s can be measured?

Ž .Which source s of errors can be assumed?
Is it possible to follow the change in responses in course of time?

Ø Select variables:
Which experimental variables are possible to study?
Review and evaluate the variables—important, probably unimportant, etc.
Select experimental domain.
Are all variables interesting in the selected experimental domain?
Which interaction effects can be expected?
Which variables are probably not interacting?

This gives a list of possible responses, experimental variables and potential interaction effects. Penetrate this list
critically a few times. The time spent on planning in the beginning of a project is always paid back with interest
at the end.

5.1.1. Hints on Õariable selection
At this point, when the variables to be investigated are selected, it is also decided which variables that should

not be investigated. These variables have to be kept at a fixed level in all experiments included in the experi-
mental design. However, remember that it is always more economical to include a few extra variables in the
first screening, than adding one variable later.

Think about how the different variables should be defined. It is sometimes possible to lower the number of
experiments needed, in order to achieve the important information, just by redefining the original variables.
Concentrations of different starting material can for example often be redefined as molarrmolar ratios:

w x w x w xconcentrations A , B and C s three variables;

give the same information as

w x w x w x w xratios A r B and C r B s two variables.

When all aspects have been penetrated, and variables, responses as well as experimental domain are selected,
then it is time for the next step in the planning procedure.

5.1.2. Select a design and plan the experiments
When a list of variables to be investigated has been completed, an experimental design is chosen in order to

estimate the influence of the different variables on the result. In screening studies, linear or second order interac-
tion models are common, such as in full factorial or fractional factorial designs. The former design is limited to
the determination of linear influence of the variables, while the latter allows for interaction terms between vari-
ables to be evaluated as well. Eventually, the variables with the largest influence on the procedure can be identi-
fied.
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5.2. Factorial design

In a factorial design the influences of all experimental variables, factors, and interaction effects on the re-
sponse or responses are investigated. If the combinations of k factors are investigated at two levels, a factorial
design will consist of 2 k experiments. In Table 1, the factorial designs for 2, 3 and 4 experimental variables are
shown. To continue the example with higher numbers, six variables would give 26 s64 experiments, seven

7 Ž .variables would render 2 s128 experiments, etc. The levels of the factors are given by y minus for low level
Ž .and q plus for high level. A zero-level is also included, a centre, in which all variables are set at their mid

value. Three or four centre experiments should always be included in factorial designs, for the following rea-
sons:
Ø the risk of missing non-linear relationships in the middle of the intervals is minimised, and
Ø repetition allows for determination of confidence intervals.

What y and q should correspond to for each variable is defined from what is assumed to be a reasonable
variation to investigate. In this way the size of the experimental domain has been settled. For two and three
variables the experimental domain and design can be illustrated in a simple way. For two variables the experi-

Ž .ments will describe the corners in a quadrate Fig. 1 while in a design with three variables they are the corners
Ž .in a cube Fig. 2 .

5.2.1. Signs of interaction effects
The sign for the interaction effect between variable 1 and variable 2 is defined as the sign for the product of

Ž .variable 1 and variable 2 Table 2 . The signs are obtained according to normal multiplication rules. By using
these rules it is possible to construct sign columns for all the interactions in factorial designs.

Example 1: A ‘work-through’ example with three variables

This example illustrates how the sign tables are used to calculate the main effects and the interaction effects
from a factorial design. The example is from an investigation of the influence from three experimental variables

Table 1
Factorial designs

Two variables Three variables Four variables

Exp. no. Variables Exp. no. Variables Exp. no. Variables

x x x x x x x x x1 2 1 2 3 1 2 3 4

1 y y 1 y y y 1 y y y y
2 q y 2 q y y 2 q y y y
3 y q 3 y q y 3 y q y y
4 q q 4 q q y 4 q q y y

5 y y q 5 y y q y
6 q y q 6 q y q y
7 y q q 7 y q q y
8 q q q 8 q q q y

9 y y y q
10 q y y q
11 y q y q
12 q q y q
13 y y q q
14 q y q q
15 y q q q
16 q q q q

Note that all variables are changed simultaneously in a controlled way, to ensure that every experiment in each design is a unique combina-
tion of variable levels.
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Fig. 1. The experiments in a design with two variables.

x , x and x on the yield of an organic synthesis. The variables and the experimental domain are specified in1 2 3

Table 3.
A sign table, or design matrix, for varying 3 variables according to a full factorial design is constructed in

Table 4. The centre point, experiment number 9, is only added as a control to see if there is a non-linear rela-
tionship between the variables and the responses. If the value for the response of the centre point is very much
different from the mean value, b , then it is necessary to include quadratic terms in the model. This means that0

additional experiments have to be performed.
The experiments are evaluated in order to fit a polynomial model, in this case a third order interaction model:

ysb qb x qb x qb x qb x x qb x x qb x x qb x x x0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3

Table 4 is used to calculate the main effects and the mean value, b .0

b s1r8 73q71q79q82q78q89q83q93 s81Ž .0

The main effects are calculated by using the signs in the corresponding columns and either add or subtract the
Ž .value of the response, y. This summation is finally divided with the number of experiments in this case 8 .

b s1r8 y73q71y79q82y78q89y83q93 s2.8Ž .1

b s1r8 y73y71q79q82y78y89q83q93 s3.2Ž .2

b s1r8 y73y71y78y82q78q89q83q93 s4.9Ž .3

To be able to calculate the signs for the interaction effects, the corresponding columns are constructed for each
effect—in this case, x x , x x , x x and x x x . The signs for these columns are achieved by multiplying1 2 1 3 2 3 1 2 3

Ž .the columns for the corresponding main effects Table 5 . This type of matrix is called model matrix or calcula-
tion matrix. The centre point experiment is removed since it is not used in the calculation of the effects.

Fig. 2. The experiments in a design with three variables.
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Table 2
Sign of interaction effect x x1 2

x x x x1 2 1 2

y y q
q y y
y q y
q q q

Table 3
Specification of variables and the experimental domain

Variables Experimental domain

Ž . Ž .y -level 0-level q -level

Ž .x : Catalyst concentration % 0.1 0.2 0.31
Ž .x : Reaction temperature 8C 60 70 802

Ž .x : Reaction time min 20 30 403

Table 4
Design and the yield response

Ž .Exp. no. x x x Yield %1 2 3

1 y y y 73
2 q y y 71
3 y q y 79
4 q q y 82
5 y y q 78
6 q y q 89
7 y q q 83
8 q q q 93
9 0 0 0 81

Table 5
Model matrix and the yield response

Ž .Exp. I x x x x x x x x x x x x Yield %1 2 3 1 2 1 3 2 3 1 2 3

1 q y y y q q q y 73
2 q q y y y y q q 71
3 q y q y y q y q 79
4 q q q y q y y y 82
5 q y y q q y y q 78
6 q q y q y q y y 89
7 q y q q y y q y 83
8 q q q q q q q q 93

Table 6
Levels of the variables

Experimental domain

Ž . Ž .y -level q -level

x : Granv 25,37 25,931

x : Sfhast 650 9502

x : Tidsfpl 60 1803
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The calculations of the interaction effects are done in the same way as for the main effects.

b s1r8 73y71y79q82q78y89y83q93 s0.5Ž .12

b s1r8 73y71q79y82y78q89y83q93 s2.5Ž .13

b s1r8 73q71y79y82y78y89q83q93 sy1.0Ž .23

b s1r8 y73q71q79y82q78y89y83q93 sy0.8Ž .123

The estimated effects are then placed in the polynomial model describing the relationship between the variables:

ysb qb x qb x qb x qb x x qb x x qb x x qb x x x0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3

ys81q2.8 x q3.2 x q4.9 x q0.5 x x q2.5 x x y1.0 x x y0.8 x x x1 2 3 1 2 1 3 2 3 1 2 3

The function above is now describing how the experimental variables and their interactions influence the re-
sponse y. The model shows that variable x has the largest influence on the yield. An increase of variable 33

Ž .with one scaled unit e.g., from 0 to q1 results in an increase of the yield by 4.9%. This corresponds, in real
variables, to an increase of the reaction time by 10 min.

Example 2: A 23-factorial design: Pharmacy, pellets

This is an example from a project within Pharmacia. A process for producing caffeine pellets with a certain
Ž .size 0.71–1.4 mm was studied. The aim was to obtain a robust process giving a yield higher than 95% of this

fraction.
Ž . Ž .Three variables were investigated: amount of water in the granulation Granv , spheronizer speed Sfhast and

Ž . 3spheronizer time Tidsfpl . A 2 -full factorial design was used to study the robustness of the process. The levels
of the variables and the design used are shown in Tables 6 and 7.

Exercise
Investigate the influence of the experimental variables on the yield using the following response model:

ysb qb x qb x qb x qb x x qb x x qb x x qb x x x0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3

Example 3: A 23-factorial design: Pharmacy, formulation of tablets

In the formulation of a certain tablet three variables were considered to be important for the thickness of the
tablets. These variables were investigated by a factorial design. The different variables were the amount of

Ž . Ž .stearate lubricant , the amount of active substance and the amount of starch disintegrant . The experimental
domain is shown in Table 8. Experimental design and results are given in Table 9.

Table 7
Design and yield response

Ž . Ž .Exp. no. x x x Yield 0.71–1.4 mm %1 2 3

1 y y y 97.4
2 q y y 98.1
3 y q y 97.1
4 q q y 97.8
5 y y q 98.6
6 q y q 98.2
7 y q q 98.3
8 q q q 98.3
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Table 8
Variables and experimental domain of the formulation

Variables Experimental domain

Ž . Ž .y -level 0-level q -level

Ž .x : Amount of stearate mg 0.5 1 1.51
Ž .x : Amount of active substance mg 60 90 1202

Ž .x : Amount of starch mg 30 40 503

Exercises
Ž . Ž .a Estimate the effects coefficients of the experimental variables and evaluate their influence.
Ž .b Determine a response model that contains only the probably significant terms. Use this model to estimate

the amount of starch that has to be added to 100 mg of active substance to obtain tablets that are 5.00 mm thick.

Example 4: Screening: Candy production, ‘sega rattor’˚

You are working in a small company producing candy and the company would like to improve the produc-
tion of ‘sega rattor’. You have the following recipe as a starting point for your investigation.˚

Recipe:
90 g of sugar
50 g of glucose
25 ml of water

Ž .40 g of gelatine solution 14 g of gelatine in 26 ml of water
Ž .Production procedure: The gelatine powder and water are mixed and heated carefully until all of the gelatine is

dissolved. The solution is cooled to room temperature. Sugar, glucose and water are mixed and then heated to
1148C. The mixture is then cooled to 1008C and the gelatine solution is added. Colour and flavour may be added.
Let the mixture stand for 15 min at 808C. It is important to hold the temperature constant. Then pour the mixture
into the forms covered with potato-starch and let it stand for 4 h. The forms can be opened and the product is
ready.

Exercises
Ž .a Read the recipe and make a suggestion of possible experimental variables and make a critical review.

Suggest possible responses.
Ž .b Make a suggestion of a factorial design.

Table 9
Design and responses

Ž .Exp. no. Variables Thickness mm

x x x y1 2 3

1 y y y 4.75
2 q y y 4.87
3 y q y 4.21
4 q q y 4.26
5 y y q 5.25
6 q y q 5.46
7 y q q 4.72
8 q q q 5.22
9 0 0 0 4.86
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5.3. Fractional factorial design

To investigate the effects of k variables in a full factorial design, 2 k experiments are needed. Then, the main
effects as well as all interaction effects can be estimated. To investigate seven experimental variables, 128 ex-
periment will be needed; for 10 variables, 1024 experiments have to be performed; with 15 variables, 32,768
experiments will be necessary. It is obvious that the limit for the number of experiments it is possible to perform
will easily be exceeded, when the number of variables increases.

In most investigations it is reasonable to assume that the influence of the interactions of third order or higher
are very small or negligible and can then be excluded from the polynomial model. This means that 128 experi-
ments are too many to estimate the mean value, seven main effects and 21 second order interaction effects, all
together 29 parameters. To achieve this, exactly 29 experiments are enough. On the following pages it is shown

Ž p. kyphow the fractions 1r2, 1r4, 1r8, 1r16 . . . 1r2 of a factorial design with 2 experiments are defined, where
k is the number of variables and p the size of the fraction. The size of the fraction will influence the possible
number of effects to estimate and, of course, the number of experiments needed.

If only the main effects are to be determined it is sufficient to perform only 4 experiments to investigate 3
variables, 8 experiments for 7 variables, 16 experiments for 15 variables, etc. This corresponds to the following
response function:

ysb qSb x q´0 i i

It is always possible to add experiments in order to separate and estimate interaction effects, if it is reasonable to
assume that they influence the result. This corresponds to the following second order response function:

ysb qSb x qSSb x x q´0 i i i j i j

In most cases, it is not necessary to investigate the interactions between all of the variables included from the
beginning. In the first screening it is recommended to evaluate the result and estimate the main effects according

Ž .to a linear model if it is possible to calculate additional effects they should of course be estimated as well .
After this evaluation the variables that have the largest influence on the result are selected for new studies. Thus,
a large number of experimental variables can be investigated without having to increase the number of experi-
ments to the extreme.

5.3.1. The principals for constructing fractional factorial designs
The model matrix from a factorial design is used to define the design matrix in fractional factorial designs.

This means that columns in the model matrix X for a full factorial design are used to define the settings for the
Ž .‘extra’ variables in a series of experiments performed according to a fractional factorial design . The number of

variables that can be included is limited by the number of columns in X. On the following pages, Arabic num-
bers with bold style will be used to indicate the variable columns in the matrix. I is used to indicate the column

Ž .used for calculating the mean value the constant term in the model .

Example 5: A factorial design with two variables is shown in Table 10.

The columns a, b and ab define the settings for three variables, x , x and x , in four experiments. The column1 2 3

ab is the product of aPb. See Table 11 for the obtained design matrix.

Table 10
Model matrix

I a b ab

1 y1 y1 1
1 1 y1 y1
1 y1 1 y1
1 1 1 1
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Table 11
Design matrix

Exp. no. x x x1 2 3

1 y1 y1 1
2 1 y1 y1
3 y1 1 y1
4 1 1 1

Table 12
Experimental plan

Exp. no. x x x1 2 3

1 y1 y1 y1
2 1 y1 y1
3 y1 1 y1
4 1 1 y1
5 y1 y1 1
6 1 y1 1
7 y1 1 1
8 1 1 1

This is a half fraction of a factorial design with three variables and it is found that the selected experiments
Ž .correspond to experiment 5, 2, 3 and 8 in the factorial design Table 12 .

In Fig. 3, it is illustrated how the experiments for a half fraction are distributed in the experimental domain
spanned by three variables. It is also shown that the experiments have the form of a tetrahedron. This is the
largest possible volume spanned by four corners in three dimensions.

This shows another important property of the fractional factorial designs, that the experiments cover as much
as possible of the experimental domain. The whole experimental domain cannot be covered by a limited number
of experiments, but a fractional factorial design ‘selects’ those experiments that cover a maximal volume of the
domain in a limited number of experiments.

Example 6: Seven variables can be studied in a 27y4 fractional factorial design. The design is defined by the
3 Ž .model matrix for a 2 factorial design Table 13 .

A factorial design with seven variables gives 128 experiments. The experiments in the design define ‘the cor-
ners’ in a hyper cube within the seven-dimensional space spanned by the seven variables. The 27y4 fractional
factorial design is 1r16 of the factorial design and the eight experiments are selected in order to span the largest

Fig. 3. Distribution of the experiments in a 23y 1 fractional factorial design.
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Table 13
Design matrix for a 27y 4 fractional factorial design

Exp. no. I x x x x x x x1 2 3 4 5 6 7

a b c ab ac bc abc

1 1 y1 y1 y1 1 1 1 y1
2 1 1 y1 y1 y1 y1 1 1
3 1 y1 1 y1 y1 1 y1 1
4 1 1 1 y1 1 y1 y1 y1
5 1 y1 y1 1 1 y1 y1 1
6 1 1 y1 1 y1 1 y1 y1
7 1 y1 1 1 y1 y1 1 y1
8 1 1 1 1 1 1 1 1

possible experimental domain. In the fractional factorial design, the variables x yx are defined by the columns4 7

for the interactions between the variables a, b and c. The columns in a fractional factorial design are thus or-
thogonal. It is therefore possible to estimate the mean value and the main effects independent of each other and
with a maximal precision.

In the same way as in example 6, the columns in a 24 factorial design can be used to define the variation of
up to 15 variables in 16 experiments, i.e., a 215y11 fractional factorial design. This is a 1r2048 part of a 215

factorial design.
These designs are employed to fit the experimental data to a linear model.

ysb qSb x q´o i i

The calculations are performed as for factorial designs that were described earlier.
In fractional factorial designs, many variables can be investigated without an excessive number of experi-

ments. Less information is gained compared to full factorial designs, and the price to be paid for the few experi-
ments is the ‘contamination’ of the main effects by the interaction effects. The main effects are confounded.

5.3.2. Confounding and aliases
To describe what confounding means, an example with three variables investigated in a 23y1 fractional fac-

tor design is shown. In such a design, it is easily seen that for the experiments each variable always varies as the
Žproduct of the other two variables, while column I is the product of all the three variables, x Px Px Table1 2 3

.14 .
If a factorial design with three variables is chosen the following response model is used:

ysb qb x qb x qb x qb x x qb x x qb x x qb x x x q´0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 123 1 2 3

Table 14
Design matrix for a 23y 1 fractional factorial design

Exp. no. x x x x x x x x x1 2 3 2 3 1 3 1 2

I x x x1 2 3

1 1 y1 y1 1
2 1 1 y1 y1
3 1 y1 1 y1
4 1 1 1 1
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Since only four experiments are performed it is only possible to estimate four parameters in the model. In the
reduced design the following relations are defined:

x sx x1 2 3

x sx x2 1 3

x sx x3 1 2

Isx x x1 2 3

If these are introduced in the model above the following is obtained

ysb qb qb x qb x qb x qb x qb x qb x q´0 123 1 1 2 2 3 3 12 3 13 2 23 1

This can be reduced to

ys b qb q b qb x q b qb x q b qb x q´Ž . Ž . Ž . Ž .0 123 1 23 1 2 13 2 3 12 3

which means that a linear model with four parameters is obtained:

ysb qb x qb x qb x q´0 1 1 2 2 3 3

In this model, the parameters are linear combinations of the ‘true’ effects,

b sb qb0 0 123

b sb qb1 1 23

b sb qb2 2 13

b sb qb3 3 12

The parameter b is an estimate of the ‘true’ parameter b , but this estimate is contaminated by the ‘true’ two-1 1

variable interaction b . In other words b is confounded with b and b is an alias of the confounded effects.23 1 23 1

This is the price to pay for using fractional factorial designs. It is always possible to estimate the effects but they
will be confounded.

5.3.3. The generators of a fractional factorial design
In order to analyse which effects that are going to be confounded a new term is introduced: the generator of

a fractional factorial design. As an example, the 23y1 fractional factorial design is used. To understand why the
3 Ž .generators are practical to use, the model matrix for a 2 factorial design is given Table 15 .

In four of these experiments variable c varies in the same way as the product of a and b. These experiments
are marked by an ). For these experiments it is also seen that asbc, bsac and Isabc. It is very difficult to
identify such relations in a model matrix, especially when the matrix is large. The four experiments fulfilling
that csab are one half of the full factorial design. Four experiments correspond to a 22 factorial design. This
means that we can use the model matrix for a 22 design to define the variation for the ‘extra’ variable c, and

Table 15
Model matrix for a 23 factorial design

I a b c ab ac bc abc

1 y1 y1 y1 1 1 1 y1
) 1 1 y1 y1 y1 y1 1 1
) 1 y1 1 y1 y1 1 y1 1

1 1 1 y1 1 y1 y1 y1
) 1 y1 y1 1 1 y1 y1 1

1 1 y1 1 y1 1 y1 y1
1 y1 1 1 y1 y1 1 y1

) 1 1 1 1 1 1 1 1
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Table 16
Model matrix for a 23y 1 fractional factorial design

c
I a b ab

1 y1 y1 1
1 1 y1 y1
1 y1 1 y1
1 1 1 1

thus obtain the 23y1 fractional factorial design. The half fraction, in which csab, is obtained by letting column
ab define the variation for variable c in the model matrix for the 22 design.

The experiments above are now the same as those selected from the factorial design marked with an ). The
Žmatrix in Table 16 has some special mathematical properties. If the columns are multiplied to each other in any

.combination one of the other columns will always be obtained. It is also seen that

IPasa i.e., Iasa
IPbsb i.e., I bsb
IPabsab i .e., Iabsab

Ž .Multiplication by I does not change anything since the elements in the column are multiplied by q1 . If a
Ž . Ž . Ž . Ž .column is multiplied by itself, it means that y1 is multiplied by y1 and q1 by q1 . This will always

result in column I.

aPasa2 s I

bPbsb2 s I

abPabsa2 Pb2 s I
etc.

Variable c in the fractional factorial design above is varied as the product ab. By doing this the effects b and3

b will be confounded. Other effects will also be confounded.12

The fractional factorial design is generated from the factorial design by defining csab. By using the calcu-
lation rules defined above, both sides in the relation csab are multiplied by c and the following is obtained:

cPcsabPc
which gives

Isabc
This relation is the generator and contains the information about how the different columns can be multiplied to
obtain column I. The generator can now be used to identify the confounding as follows: each column in the

Table 17
Model matrix for a 23y 1 fractional factorial design

I a b ab

abc bc ac c

1 y1 y1 1
1 1 y1 y1
1 y1 1 y1
1 1 1 1
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matrix is multiplied by the generator for the fractional factorial design. In this way multiplication of Isabc
with I, a, b and ab gives

IP Isabc i.e., IsabcŽ .
aP Isabc i.e., asbcŽ .
bP Isabc i.e., bsacŽ .
abP Isabc i.e., abscŽ .

In Table 17, the column headers provide an overview of the results of the multiplications. The model matrix is
for a 23y1 fractional factorial design.

When these columns are used to calculate the effects the following confounded effects are determined:

From column I the estimate b qb0 123

a the estimate b qb1 23

b the estimate b qb2 13

ab the estimate b qb12 3

5.3.4. More generators
To investigate five variables in a factorial design, 32 experiments are needed. The screening study aims to

determine the importance of the experimental variables. In this case, it is sufficient to start with a 25y2 frac-
tional factorial design and only eight experiments have to be performed. To define such a design the model ma-
trix for a 23 factorial design is used. This matrix contains the following columns:

I a b c ab ab bc abc
To define the two extra variables d and e, any of the four interaction columns can be used. In this example we
choose to define the ‘extra’ variables in the following way:

dsbc i.e., d2 sbcd
esabc i.e., e2 sabce,

resulting in the independent generators:
Isbcdsabce

The multiplication rules are also valid for the independent generators. When they are multiplied with each other,
column I is obtained. This means that

IsbcdPabce
which is simplified to

Isade
Therefore a dependent generator has to be added to the independent generators to obtain a complete set of gen-
erators

Isbcdsabcesade
This set of generators contains four ‘words’. The number of ‘words’ is determined by the fact that a 25y2 de-

Žsign is 1r4 of factorial design. From this set of generators, the following confounding pattern is found Table
.18 .

Table 18
Example of confounding

I a b c ab ac bc abc

bcd abcd cd bd acd abd d ad
abce bce ace abe ce be ae e
ade de abde acde bde cde abcde bcde
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If it is assumed that interactions of higher order than three have a negligible influence on the responses, com-
pared to the main effects and the second order interaction effects, the following estimates of the model parame-
ters will be calculated from the experiments:

From column I the estimate b0

a the estimate b qb1 45

b the estimate b qb2 34

c the estimate b qb3 24

ab the estimate b qb12 35

ac the estimate b qb13 25

bc the estimate b qb qb4 23 15

abc the estimate b qb5 14

The variables d and e could have been defined by other columns, e.g., dsab and esac, which would have
resulted in another set of generators:

Isabdsacesbcde
Another pattern of confounding would then have been found.

5.3.5. Resolution of a fractional factorial design
The resolution of a fractional factorial design is defined by the shortest ‘word’ in the set of generators. Ro-

man numbers usually specify the resolution. In a design of

Ø resolution III the main effects are confounded with two-variable interaction effects;
Ø resolution IV the main effects are confounded with three-variable interaction effects, and the

two-variable interaction effects are confounded with each other;
Ø resolution V the main effects are confounded with four-variable interaction effects, and the

two-variable interaction effects are confounded with the three-variable interaction
effects.

Fractional factorial designs of resolution higher than V are rarely used in screening.

5.3.6. How to separate confounded effects
In the previous example, a 25y2 fractional factorial design was used that corresponded to a 1r4 of a factorial

design. The additional variables d and e were defined as dsbc and esabc, which gave the independent gen-
erators

Isbcdsabce
The design has the resolution III, i.e., the main effects are confounded with two-variable interaction effects. A
new quarter is obtained by changing the sign on column dsIbc. Another one is obtained by changing the sign
on column esIabc. Finally, you get the last quarter by changing the signs on both columns, dsIbc and
esIabc. These different ways of defining the additional variables correspond to different sets of generators:

Design A Isbcdsabcesade
Design B IsIbcdsabcesIade
Design C IsbcdsIabcesIade
Design D IsIbcdsIabcesade

The first two are the independent generators and "ade is the dependent generator. Since the sets of generators
are different, the confounding pattern obtained will also be different. To get an overview of the confounding,
only the main effects and the two-variable interaction effects are included.
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Table 19
Overview of confounding

Design A Design B Design C Design D

b b b b0 0 0 0

b q b b y b b y b b q b1 45 1 45 1 45 1 45

b q b b y b b q b b y b2 34 2 34 2 34 2 34

b q b b y b b q b b y b3 24 3 24 3 24 3 24

b q b b q b b y b b y b12 35 12 35 12 35 12 35

b q b b q b b y b b y b13 25 13 25 13 25 13 25

b q b q b b y b y b b q b y b b y b q b4 23 15 4 23 15 4 23 15 4 23 15

b q b b y b b y b b q b5 14 5 14 5 14 5 14

Now suppose that a series of experiments has been performed according to the design A. In the overview in
Table 19, it is shown that design B is complementary to design A in such a way that all main effects will be
separated from the two-variable interaction effects. Performing new experiments according to design B would
thus clear the main effects, although the two-variable interaction effects would still be confounded with each
other.

When a fractional factorial design has been used, it is always possible to add a complementary fraction in
order to separate confounded effects.

5.3.7. All experiments are useful
If it is concluded that a variable has no influence on the response, the amount of information available has

increased. The fractional factorial design then turns in to a larger fraction due to the use of fewer variables. The
experiments performed can now be used to estimate interaction effects that were confounded earlier. For three
variables this is illustrated in Fig. 4.

If one or several variables have no influence on the response, the new confounding pattern can be determined
by using the generators for the original design. Then it is just to remove all the elements containing the ‘unim-
portant’ variable.

Fig. 4. The effect obtained for a 23y 1 fractional factorial design when a variable can be removed.
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5.4. EÕaluation of models

In factorial or fractional factorial designs all variables are normalised to vary between y1 and q1. For con-
tinuous variables, the scaling is made in such a way that the original variables vary continuously within the in-
terval from y1 to q1. Since all variables used in the model are normalised in this way, the relative change of a
variable is directly related to the size of its regression coefficient. This means that if the model parameters have

Ž .either a large positive or negative value the corresponding variable has a large influence on the response s .
If a response model contains interaction terms, b x x , the evaluation of the influence of different variablesi j i j

Ž .on the response is simplified by projections of the response surface on to the x , x -plane. This means to cal-i j

culate the response values for x s"1 and x s"1, while the other variables are kept constant within the1 2

experimental domain.

Ž .Example 7: The yield, y % , of a process influenced by the three variables x , x and x , is described by the1 2 3

following response model:

ys75.0y4.1 x q9.3 x y0.9 x q1.2 x x y5.1 x x q8.0 x x1 2 3 1 2 1 3 2 3

In this case, the projections are made through zero, i.e., the variable not included in the projection has been kept
at the 0-level.

If: x s 0; x s 0; x s 03 2 1

Best conditions:
x sy1 x sy1 x s 11 1 2

x s 1 x s 1 x s 12 3 3

It is concluded that a very high yield, ys99.4%, should be possible to obtain with the variable settings x sy1,1

x s1 and x s1.2 3

5.4.1. Normal distribution plots to identify significant effects
Ž 2If an independent estimation of the experimental error has been done i.e., determination of s through repeti-

.tion of an experiment several times, for example , statistical distributions can be used to compare the estimated
effects with the experimental error. This kind of comparison is usually not very fruitful since the degree of free-
dom often is low. In screening studies, the lack of repeated experiments means that confidence intervals cannot
be determined.

Another method to study the experimental error is to use normal distribution plots. It is a fast and simple
method to rapidly get an indication if any of the estimated effects are diverging significantly from the normal
distribution. If an effect has a large deviation from the normal distribution it probably describes something else
than the experimental noise.
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Fig. 5. A normal distribution curve.

Ž .Consider a set of estimated coefficients b , b . . . b that is normally distributed. The frequency will then1 2 n

describe the bell-shaped normal distribution curve as in Fig. 5.
Ž .If instead a cumulative probability distribution is desired, i.e., the probability P the shadowed area in Fig. 6

for a measured value less than bsa, this is done by plotting P vs. b. For a normal distribution, this will be an
Ž .S-shaped Curve Fig. 7 .

The P-axis is then adjusted to straighten the curvature and describes the normal distribution as a straight line
Ž .Fig. 8 .

After the effects of the variables have been estimated from a factorial design, their coefficients are plotted
against probability, as in Fig. 8. Then it is possible to distinguish effects from normally distributed noise.

When a normal distribution plot is made, the effects have to be ordered after increasing size, mean value b0

excluded:

smallest , second smallest , . . . largest
1 2 q

If the experiments have been performed in a randomised order we can see the q effects as a randomised sample
from a normally distributed population of experimental noise. This is true if the variables do not have any effect.

Fig. 6. Frequency vs. b.

Fig. 7. Probability P vs. b.
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Fig. 8. Probability P, on an adjusted axis scale vs. b. Normal distribution describes a straight line.

Ž . ( )The first smallest effect is assumed to represent P 1rqP100 % of the cumulative distribution function. The
( ) Ž .second effect represents P 2rqP100 %, and so on, until the last largest effect, which is assumed to represent

( )P qrqP100 %.
w xDivide the interval 0–100% on the P-axis in q equally large intervals. Each interval will then be 100rq.

The smallest effect is then plotted in the middle point of the first interval. The second smallest effect is plotted
in the middle point of the second interval, etc. This is summarised in a formula:

1
100 qyž /2

P % sŽ .
n

where q is the ranking order of the effect and n is the number of parameters. If a normal distribution plot illus-
Ž .trates the distribution of the experimental noise, then the line should go through the co-ordinates 0, 50% . This

is assumed, since the mean value of the experimental noise is normally distributed around zero.

5.4.1.1. Practical use of the normal distribution plot of effects. Normal probability plots of effects should only
be consulted if the design is saturated, i.e., if the number of experiments is equal to the number of factors. Oth-
erwise, if more experiments are performed than there are factors, the column plot of effects is preferable since
the increased degrees of freedom allow for confidence intervals to be calculated.

A very practical use of normal probability plots of effects is to exclude one or some of the variables that have
been identified in the plot as less influential. Thereby degrees of freedom are released and calculation of confi-
dence intervals will be allowed, as was pointed out before. The continuing evaluation of the remaining variables
will thus be a lot more satisfying, when having confidence intervals to consult for their significance.

Example 8: In Table 20, the parameters have been ordered according to increasing size. The table is then used
Ž .to make the normal distribution plot Fig. 9 .

The three linear effects, b and b , as well as the effect of the two-variable interaction, b and b , do not fit2 3 13 23

the straight line in Fig. 9. These effects have an influence on the result within the experimental domain. All
other effects, belonging to the variables x and x , fit the straight line well, which means that they do not influ-4 5

Ž .ence the result y within the experimental domain. If additional experiments should be performed in order to1

optimize the result, only variables x , x and x should be of interest. The screening has thus lead to a focus on1 2 3

the most influential variables within the experimental domain.
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Table 20
The effects ordered according to increasing size and the corresponding probability co-ordinate P

Ž .Ranking order Estimate Parameter P %

1 y7.81 b 3.323

2 y6.46 b 10.013

3 y3.00 b 16.75

4 y2.56 b 23.312

5 y1.30 b 30.04

6 y0.95 b 36.714

7 y0.90 b 43.324

8 y0.73 b 50.025

9 y0.36 b 56.745

10 0.75 b 63.315

11 1.05 b 70.035

12 2.13 b 76.734

13 6.44 b 83.32

14 9.21 b 90.01

15 18.49 b 96.73

5.4.2. EÕaluation of model fitness

5.4.2.1. Explained and predicted Õariation. In order to evaluate the fit of a model, values of explained variation,
R2, and predicted variation, Q2, provide excellent guidance.

In proper terminology, the explained variation is the fraction of the total variation of the response that is ex-
plained in the model. It is calculated as

R2 s SSySS rSSŽ .resid

SS is the sum of squares of the total variation of a selected response, corrected for the mean. The total SS con-
Ž . Ž .sists of two parts, one part resulting from the regression model SS and another due to the residuals SS .regr resid

Small residuals will render a high degree of explained variation.

Fig. 9. Normal distribution plot of the parameters in Table 20.
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Table 21
Guidelines on how to appreciate values of R2 and Q2

2 2Nature of data R Q

Chemical Acceptable: G0.8 Acceptable: G0.5
Excellent: )0.8

Biological Acceptable: )0.7 Acceptable: )0.4

The predicted variation, Q2, is the fraction of the total variation of the response that can be predicted in the
model. It is calculated as

Q2 s SSyPRESS rSSŽ .
PRESS is the prediction residual sum of squares and is determined through cross-validation. 1 Small devia-
tions between the actual residuals and the predicted ones will render a low PRESS and a high value of predicted
variation.

Values of R2 and Q2 are usually between 0 and 1. Acceptable values are totally dependent on the nature of
the data that are being examined. Table 21 offers some guidance.

5.4.2.2. ANOVA. In an analysis of Õariance, ANOVA, the total variation of the response is defined as a sum of
Ž . Ž .two components; a regression component SS and a component due to the residuals SS . The sum ofregr resid

Ž .squares of the total variation, corrected for the mean SS , can thus be written as

SSsSS qSS .regr resid

If there are replicates among the experiments, the residuals component are further divided into parts that are the
Ž . Ž .sum of squares of lack of fit SS and the sum of squares of pure experimental error SS :lof pe

SS sSS qSS ,resid lof pe

In the statistical experimental design software Modde 4.0, 2 there are two plots that originate from analysis
Ž .of variance. Those two plots, the ANOVA plot and the Lack of fit plot Figs. 10 and 11 , are very helpful in

determining the fitness of a model.
Ž .In the ANOVA plot Fig. 10 , the regression component of the total variation is compared to the residual

Ž .component. If the standard deviation of the response explained in the model SD regression is larger than the
Ž .standard deviation of the residuals multiplied by the square root of the critical F RSD) F , then the model( crit

Ž .is significant at the chosen probability level usually Ps0.05% .
Ž .In the plot of lack of fit Fig. 11 , the lack of fit component of the residuals is compared to the pure experi-

Ž .mental error component. If the standard deviation of lack of fit SD LoF is larger than the standard deviation of
Ž .the pure experimental error, multiplied by the square root of the critical F SD pe) F , then the model suf-( crit

fers from a significant lack of fit.
The comparison of the bars in the ANOVA plots is similar to the ordinary variance ratio test, or F-test. 3 In

Ž . Ž .an F-test, the variance ratio between lack of fit lof and pure experimental error pe , is being compared to

1 Cross validation means leaving out parts of the data during a series of model fitting. About one sixth of all values is left out at each
round, and every value is left out only once. At every round, the missing values are predicted from the data that remain in the model. If the
differences between the actual values and the predicted ones are small, then the predictive ability of the model is good and the value of
PRESS is small.

2 From Umetri, Umea, Sweden.˚
3 Ž .Morgan, E., Chemometrics: Experimental design, Wiley, Chichester, England 1995 , or Box, G.E.P., Hunter, W.G., Hunter, J.S. in

Section 8.
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Fig. 10. ANOVA plot from Modde 4.0.

tabled values of F-distribution. If F exceeds the critical F, then there is a significant lack of fit at the prob-lofrpe
Ž .ability level that is chosen usually Ps0.05 and the model is incorrect. In the ANOVA plots in Modde, the

Ž .variances are simply exchanged for the standard deviations SDs6variance , and the comparison SD rSDlof pe

vs. the equally converted 6F has been rearranged to SD vs. SD )6F .crit lof pe crit

5.4.3. Model refinement
Before moving on with interpreting a satisfactory model, refinement should always be attempted. Chances

are that both values of explained and predicted variation will increase in the process. Refinement is primarily
achieved through exclusion of the factors that are found to be insignificant in the coefficient plot.

In the coefficient plot from the software Modde 4.0, the influence of all factors on the response is displayed
Ž .in bars with clearly stated confidence intervals Fig. 12 . Factors having small piles within the boundaries of the

confidence interval have no significance, while factors with bigger piles are more influential. Deletion of the
insignificant factors should always be made one at a time, since the deletion of one factor may influence the
confidence intervals of the remaining factors.

Example 9: Refinement

An investigation covered five variables and ten cross terms. The explained variation and the predicted varia-
Ž 2 2 . Ž .tion were satisfactory R s94.07%, Q s62.14% . Since many of the cross terms were insignificant Fig. 12 ,

it was likely that the model would favour from exclusion of some of them.
One by one, the insignificant cross terms were deleted from the model. The predicted variation rose for every

deletion, while the explained variation was fluctuating around its initial value. Finally, with the deletion of the

Fig. 11. Plot of lack of fit from Modde 4.0.
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Fig. 12. Plot of scaled and centred coefficients for the response, from Modde 4.0.

seventh cross term, the explained and predicted variation suddenly decreased to very low values. Therefore, the
last excluded cross term was reinserted and the model was saved.

ŽIn comparing the explained and predicted variation before and after the refinement Figs. 13 and 14, respec-
.tively the refinement seemed to have been successful. The explained variation increased only slightly, while the

predicted variation rose from 62% to 83%.

Example 10: A 25y2 fractional factorial design: Construction of experimental design

In a screening study, variables are to be investigated by a fractional factorial design.

Exercise
Ž . 5y2a Construct an experimental design for investigating five variables in a 2 fractional factorial design. There
is a number of possibilities.
Ž .b Find out how the main effects and the two-variable interaction effects are confounded in the design se-

Ž .lected above a .
Ž .c Make an additional design that will make it possible to separate the main effects from the two-variable
interaction effects.

Fig. 13. Summary of fit plot from Modde 4.0, before the refinement.
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Fig. 14. Summary of fit plot from Modde 4.0, after the refinement.

Example 11: Fractional factorial design, 25y1: Pharmacy, pre-formulation

This example is taken from Leuenberger and Becher. 4 The aim of this study was to find the best suitable
excipients from the point of view of stability. Therefore, the active substance was mixed with different excipi-

Ž .ents. The drug substance was analysed for degradation products Table 22 .
The response consisted of % intact drug substance as shown in Table 23.

Exercises
Ž .a Construct a fractional factorial design with 16 experiments. Use the unlikely significant interaction effect
x x x x to define variable x .1 2 3 4 5
Ž . Ž .b Estimate the effects coefficients of the experimental variables and evaluate their influence.
Ž .c Recommend an excipient mixture!

5y1 Ž .Example 12: A 2 fractional factorial design: The Willgerodt–Kindler reaction Fig. 15

The example is taken from R. Carlson, T. Lundstedt and R. Shabana. 5 An organic reaction, the Willgerodt–
Kindler reaction, was studied. Five experimental variables were investigated by a 25y1 fractional factorial de-
sign.

The experimental variables, the design and the yields are given in Tables 24 and 25.

The experimental design is a 25y1 fractional factorial design with the generator Isabcde.

Exercise
Determine a second order interaction model in order to describe the yield as a function of the experimental

variables. Identify probably significant variables by using a normal distribution plot and refine the model.

6. Optimization

In this part, two different strategies for optimization will be introduced; simplex optimization and response
surface methodology. An exact optimum can only be determined by response surface methodology, while the
simplex method will encircle the optimum.

4 Ž .Leuenberger, H., Becher, W., A factorial design for compatibility studies in pre-formulation work, Pharm. Acta Helv, 50, 88–91 1975 .
5 Ž .Carlson, R., Lundstedt, T., Shabana, R., Acta Chem. Scand., B 40, 534 1986 . This example is also included as an exercise in several

software packages.
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Table 22
Variables and experimental domain

Variables Experimental domain

Ž . Ž .y -level q -level

x : Filler lactose mannitol1

x : Lubricant stearic acid magnesium stearate2
wŽ .x : Disintegrant maize starch microcrystalline cellulose Avicel3

Ž .x : Binder polyvinylpyrrolidone PVP gelatine4

x : Humidity no water added water added5

Table 23
Percentage of resulting intact drug substance after each experiment

Ž . Ž .Exp. no. Responses y % Exp. no. Responses y %

1 59.6 9 54.1
2 86.4 10 45.8
3 95.0 11 92.8
4 97.0 12 96.1
5 83.4 13 53.6
6 53.8 14 64.7
7 93.7 15 94.0
8 99.7 16 96.3

6.1. Simplex optimization

Ž .A simplex is a geometric figure with kq1 corners where k is equal to the number of variables in a k-di-
Žmensional experimental domain. When the number of variables is equal to two the simplex is a triangle Fig.

.16 .
Simplex optimization is a stepwise strategy. This means that the experiments are performed one by one. The

exception is the starting simplex in which all experiments can be run in parallel.
The principles for a simplex optimization are illustrated in Fig. 17. To maximise the yield in a chemical syn-

thesis, for example, the first step is to run kq1 experiments to obtain the starting simplex. The yield in each
corner of the simplex is analysed and the corner showing the least desirable result is mirrored through the geo-

Žmetrical midpoint of the other corners. In this way, a new simplex is obtained. The co-ordinates i.e., the experi-
.mental settings for the new corner are calculated and the experiment is performed. When the yield is deter-

mined, the worst of the three corners is mirrored in the same way as earlier and another new simplex is ob-
tained, etc. In this way, the optimization continues until the simplex has rotated and the optimum is encircled. A

Fig. 15. The Willgerodt–Kindler reaction formula.
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Table 24
Variables and experimental domain in the screening of the Willgerodt–Kindler reaction

Variables Experimental domain

Ž . Ž .y -level q -level

Ž .x : Ratio sulphurrketone molrmol 5 111
Ž .x : Ratio aminerketone molrmol 6 102
Ž .x : Reaction temperature 8C 100 1403
Ž .x : Particle size of sulphur mesh 240 1204

Ž .x : Agitation speed rpm 300 7005

fully rotated simplex can be used to calculate a response surface. The type of design described by a rotated sim-
plex is called a Doehlert design.

6.1.1. Rules for a simplex optimization
With k variables kq1 experiments are performed with the variable settings determined by the co-ordinates

in the simplex. For two variables the simplex forms a triangle. For three variables it is recommended to use a
23y1 fractional factorial design as a start simplex.

Ø Rule 1: Reflect the co-ordinates for the lowest-achieving corner in the linerplane described by the rest of
the corners and perform a new experiment by using the co-ordinates as variables settings for this experiment. A
new simplex is obtained consisting of the remaining k corners together with the new one. Continue in this way
until the response does not improve.

Ø Rule 2: If the new experiment is the one with the poorest result of the three corners, then according to the
first rule the new experiment should be performed with the same settings as the worst point in the previous sim-
plex. In this case the second worst point should be mirrored in the geometrical midpoint of the other corners.

Ø Rule 3: If a reflection gives a new experiment to be performed outside the possible experimental domain,
then this point should be regarded as the lowest-achieving and rule 2 is used.

Table 25
Experimental design and yields

Ž .Exp. no. Variables Yield %

x x x x x y1 2 3 4 5

1 y y y y q 11.5
2 q y y y y 55.8
3 y q y y y 55.8
4 q q y y q 75.1
5 y y q y y 78.1
6 q y q y q 88.9
7 y q q y q 77.6
8 q q q y y 84.5
9 y y y q y 16.5

10 q y y q q 43.7
11 y q y q q 38.0
12 q q y q y 72.6
13 y y q q q 79.5
14 q y q q y 91.4
15 y q q q y 86.2
16 q q q q q 78.6
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Fig. 16. A simplex in two variables.

Fig. 17. Illustration of a simplex optimization with two variables.

6.1.2. Calculation of the experimental settings for a new experiment in the simplex
When kq1 experiments in the start simplex have been performed, the responses in the different corners are

examined. In a simplex with two variables, the corner with the least desirable result is marked S, the best corner
with B and the second best with N. M is the geometrical midpoint in the hyper plane that is spanned by the

Ž .remaining corners when S is removed, in this case a line between B and N Fig. 18 . T is the new corner that
substitutes S in the continued optimization.

In a simplified way the mirroring can be described as follows:

Ž . Ž .midpoint Ms NqB r k
distance dsMyS
the new point TsMqd
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Fig. 18. Projection of the corner S, with poor result, to the new corner T in the simplex.

This gives

2 NqBŽ .
TsMqMySs .

kyS

For k variables, the co-ordinates x of the new corner T are calculated as:iT

X s2rK X yxÝiT i j iS� 0all j

except S

6.2. Response surface methodology

Response surfaces are used to determine an optimum. In addition, it is a good way to graphically illustrate
the relation between different experimental variables and the responses. To be able to determine an optimum it
is necessary that the polynomial function contains quadratic terms.

In the following pages, two types of designs will be presented that are employed to fit experimental data to a
quadratic model.

k k
2ysb q b x q b x q Ýb x x q´Ý Ý Ý0 i i i i i i j i j

1 1 i-j

6.2.1. Doehlert design
When a simplex optimization with two variables comes to the point where it encircles the optimum, a hexagon

is formed. Such a design is called a Doehlert design and allows the calculation of a response surface by a mini-
mum of experiments. Another attractive feature with this design is that a neighbouring domain is easily explored

Ž .by just adding a few experiments Fig. 19 .
The design matrices for Doehlert designs with two and three variables are given in Tables 26 and 27, respec-

tively.

6.2.2. Central composite design
A full central composite design consists of the following parts:
Ž .a A full factorial or fractional factorial design.
Ž .b Experiments at the centre, i.e., x s0 for all i.i
Ž .c Experiments where x s"a and with x /x s0. These points are situated on the axis in a co-ordinatei j i

system and with distance"a from the origin; they are axial points.
ŽIf the experiments are illustrated as points in a co-ordinate system, defined by the xi-axes, then the designs for

.two and three variables can be graphically illustrated as in Figs. 20 and 21.



( )T. Lundstedt et al.rChemometrics and Intelligent Laboratory Systems 42 1998 3–4032

Fig. 19. A Doehlert design with two variables. The dotted design illustrates the exploration of a neighbouring domain by adding three exper-
iments.

The design matrices for two and three variables are given in Table 28.
The value of a is varying with the number of variables. Values for up to six variables are given in Table 29.

Example 13: Simplex optimization

A reaction influenced by two experimental variables, pH and temperature, was studied. In Table 30, the first
three experiments define the starting simplex.

Exercise
Ž . Ža Calculate the experimental settings for the next experiment and use the yield given in the table experi-

.ment number four in order to identify the new simplex. With two variables the experiments can be graphically
examined on a graph paper.

Ž . Ž .b Use the seven experiments that encircle the optimum this constitutes a Doehlert design to compute a
response surface model and to determine the optimal conditions for the reaction.

Ž .Example 14: Response surface: the Willgerodt–Kindler reaction Fig. 22

In example 11, the screening of important variables for the optimization of the Willgerodt–Kindler reaction
was evaluated. The important variables identified were amount of sulphur, amount of amine and the reaction
temperature. In order to find the optimal conditions for the reaction a response surface model was established.

The experimental domain, the design matrix and the yields are given in Tables 31 and 32. Exercise
Use a computer program to fit the experimental data to a quadratic model.

Table 26
A Doehlert design for two variables

Exp. no. x x1 2

1 0.000 0.000
2 y1.000 0.000
3 y0.500 y0.866
4 1.000 0.000
5 0.500 0.866
6 y0.500 0.866
7 0.500 y0.866
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Table 27
A Doehlert design for three variables

Exp. no. x x x1 2 3

1 0.0000 0.0000 0.0000
2 1.0000 0.0000 0.0000
3 0.5000 0.8660 0.0000
4 0.5000 0.2887 0.8165
5 y1.0000 0.0000 0.0000
6 y0.5000 y0.8660 0.0000
7 y0.5000 y0.2887 y0.8165
8 0.5000 y0.8660 0.0000
9 0.5000 y0.2887 y0.8165

10 0.0000 0.5774 y0.8165
11 y0.5000 0.8660 0.0000
12 y0.5000 0.2887 0.8165
13 0.0000 y0.5774 0.8165

Ž . Ž . Ž .Fig. 20. Central composite designs for two variables. The different markings mean v factorial design, ` centre point and = axial
points.

Fig. 21. Central composite designs for three variables. Markings as in Fig. 20.
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Table 28
Ž . Ž .Central composite design matrices for two left and three right variables

Two variables Three variables

x x x x x1 2 1 2 3

y1 y1 Factorial design y1 y1 y1 Factorial design
1 y1 1 y1 y1

y1 1 y1 1 y1
1 1 1 1 y1

y1 y1 1
0 0 Centre points 1 y1 1

y1 1 1
y a 0 Axial points 1 1 1

a 0 0 0 0 Centre point
0 y a

0 a y a 0 0 Axial points
a 0 0
0 y a 0
0 a 0
0 0 y a

0 0 a

Table 29
Central composite designs

Number of variables 2 3 4 5 5 6 6
5y 1 6y12 2

Number of experiments in the factorial design 4 8 16 32 16 64 32
Number of axial points 4 6 8 10 10 12 12
Value of a 1.414 1.682 2.000 2.378 2.000 2.828 2.378

Table 30
Experimental variables and response

Ž .Exp. no. pH Temp. Yield %

1 6.90 25 29
2 7.05 26 38
3 6.95 28 41
4 7.10 29 68
5 7.00 31 45
6 7.15 32 56
7 7.25 30 63
8 7.20 27 41

Evaluate and refine the model and determine the optimal conditions. Make projections of the response sur-
face.

7. Mixture designs

In a mixture experiment, it is not the actual amount of the single ingredient that matters, but rather its propor-
tion in relation to other ingredients. The sum of all the ingredients is a constant total T , which is equal to 100%

Ž .or 1 unless any constant mixture factors are present . The constant total T represents a constraint on mixture
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Fig. 22. The Willgerodt–Kindler reaction formula.

experiments that implies independence between all mixture factors. This independence in turn affects the experi-
mental region and brings particular demands on the model making, which calls for mixture designs.

7.1. Factors in mixture experiments

7.1.1. Mixture factors
The mixture factors, or the formulation factors, are the ingredients that are believed to have effect on the

outcome of the formulation and whose proportions are to be varied in the mixture experiment.

7.1.2. Filler
Some mixture experiments have mixture factors only, while in others the presence of a filler is mandatory.

When baking, for example, yeast and sugar would render little result without the presence of flour. It may how-
ever not always be as clear-cut to define the filler among many ingredients. The following pointers may be help-
ful.
Ø The filler has no effect of its own that is of interest for the outcome of the formulation.
Ø It is always present in the mixture.
Ø It accounts for a large percentage of the mixture.
Ø It is added at the end to bring the mixture total to the desired amount, the constant total T.
Only one ingredient can be defined as a filler. When you specify a filler, the conditions that are to be met are
checked in Modde. Then, by default, a design is created in which the amount of the filler considered but the
filler itself is in other regards omitted.

7.1.3. Constant mixture factors
All mixture factors are either controlled or constant. Mixture factors are defined as constant when they are

kept unchanged in the experiment. When constant mixture factors are present, the mixture total T is calculated
as

Ts1yS constant mixture factorsŽ .
instead of adding up to 1.

In Modde, an error message is issued whenever the mixture total is not equal to T or 1.
A filler can never be a constant mixture factor, as was pointed out in Section 7.1.2.

Table 31
Variables and experimental domain in the optimization of the Willgerodt–Kindler reaction

Variables Experimental domain

y1.682 y1 0 1 1.682

Ž .x : Sulphurrketone molrmol 2.95 5.0 8.0 11.0 13.051
Ž .x : Aminerketone molrmol 4.63 6.0 8.0 10.0 11.372

Ž .x : Reaction temperature 8C 86 100 120 140 1543
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Table 32
The design matrix and yields

Ž .Exp. no. x x x Yield %1 2 3

1 y1 y1 y1 11.5
2 1 y1 y1 43.7
3 y1 1 y1 38.0
4 1 1 y1 75.1
5 y1 y1 1 79.5
6 1 y1 1 88.9
7 y1 1 1 77.6
8 1 1 1 78.6
9 y1.682 0 0 48.5

10 1.682 0 0 91.5
11 0 y1.682 0 58.8
12 0 1.682 0 94.7
13 0 0 y1.682 14.4
14 0 0 1.682 94.1
15 0 0 0 83.9
16 0 0 0 84.2
17 0 0 0 85.6
18 0 0 0 82.6
19 0 0 0 83.2
20 0 0 0 84.9

7.1.4. Process factors
Process factors are the experimental parameters that are not part of the actual mixture, such as temperature or

pH, for example. The process factors are expressed either in a quantitative or a qualitative form. Process factors
can be incorporated together with mixture factors in the same designs in Modde. 6

7.2. Scaling

Ž .When the model is fitted with partial least squares projections to latent structures PLS , factors are scaled
to unit variance. Mixture factors will not be scaled when the model is fitted with multiple linear regression
Ž .MLR .

With PLS, the dependence between factors will be taken into account when the model is fitted. Therefore, it
is preferable to MLR when mixture experiments are concerned.

7.3. The experimental region

Ž .When all mixture factors vary from 0 to T the mixture total , the shape of the experimental region is a sim-
plex. 7 In some cases, though, factors may be constrained in ways that prohibit values beyond certain limits.
Then, some of the experimental region has been cut off and cannot be explored.

6 A quantitative factor is measured on a continuous scale, while a qualitative factor only has discrete values, such as ‘off or on’ and ‘with
or without’. In Modde, the discrete values have to be converted to numerical values.

7 Ž .A simplex is a geometric figure with nq1 corners in an n-diemsional space. A regular simplex in two dimensions ns2 is an equilat-
Ž .eral triangle. In three dimensions ns3 , it is a tetrahedron.
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Fig. 23. Example of a restricted experimental region, resulting form lower limits in all three factors. The shape of the shadowed area is a
simplex, inside the original simplex.

When all factors have only lower or only upper limits, the restricted experimental region is a small simplex
Ž .inside the original simplex Fig. 23 . When factors have different limitations, the restricted experimental region

Ž .becomes an irregular polyhedron inside the simplex Fig. 24 .
In order to establish the form of the experimental region in each case, the ranges of the experimental region

is calculated in Modde from the range of each factor as:

R sSU yTU i

and

R sTySLL i .

R and R are the lower and upper ranges for the restricted experimental region. L and U are the lower andL U i i

upper limit of the ith mixture factor. The lower limit simplex is orientated as in Fig. 23, while the upper limit
simplex has the opposite orientation.

7.4. Pseudo component transformations

When the experimental region is a lower or upper limit simplex, the mixture factors are by default trans-
formed into pseudo components in Modde. Their ranges will thereby be made to vary between 0 and 1. The
analysis is performed on the pseudo components, which allows for the coefficients to be directly interpreted as

Fig. 24. Example of a restricted experimental region, resulting from different limits in all three factors. The shape of the shadowed area is an
irregular polyhedron.
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Ž 8.mixture factor effects unless the Sheffe MLR fit method is used . The worksheet is however always displayed´
in original units.

When the shape of the experimental region is an irregular polyhedron, pseudo component transformation is
less meaningful, and is therefore not available in Modde.

7.5. Choice of design

When all factors are mixture factors and the shape of the region is a simplex, there are several classical mix-
ture designs available in Modde. It is however always recommended that D-optimal designs be used for mix-
tures, since it is the only design in which the dependence between factors will be considered. In all other classi-
cal designs the factors are assumed to be independent.

Example 15: The following example is taken from a Modde 4.0 tutorial. 9 The data are available in Modde in
example ‘Snee8’.

Ž .A new product was made from eight ingredients x yx . None of them was defined as a filler, so they1 8

were all formulation factors. There was one response, y, for which high values would indicate good quality of
the product. The design of the screening was chosen to be D-optimal with PLS as fit method. From the resulting
model, a series of plots could be produced in Modde.

Exercises
Try to find answers to the questions below with the aid of the following plots. Guidelines to the interpretation

are added in the end of this exercise.

Analysis of the quality of the model:
Ø Would you say that the explained variation was satisfying?
Ø Did the predicted variation reach an acceptable level, in your opinion?
Ø Did the model suffer from lack of fit?
Ø Were there any severe outliers among the data?

Analysis of the formulation results:
Ø Would you say that the response was well correlated with the mixture factors?
Ø Which mixture factors were the most influential on the response?
Ø What recommendations would you give for future formulations? Note that all variables have to be present in

the mixture.

8 Ž .Scheffe MLR is one of three fit methods available in Modde 4.0. The other two are multiple linear regression MLR and partial least´
Ž .squares PLS .

9 Ž .Issued by Umetri, Umea, Sweden unknown version .˚
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Interpretation guidelines

Ž 2 2 .Plot 1. Summary of fit: the levels of explained and predicted variation were excellent R s97% and Q s84% .

Plot 2. ANOVA: in the plot of lack of fit, the standard deviation of lack of fit was smaller than the standard
deviation of the pure error multiplied by the square root of the critical F. Hence, there was no lack of fit.

Plot 3. Residuals N-plot: the residuals were normally distributed without outliers.

Plot 4. PLS plot I: in the score plot, the formulation factors and the response showed correlation to a satisfying
degree.

Plot 5. PLS plot II: in the loading plot, formulation factor x turned out to be positively correlated to the re-5

sponse y. Other important factors were x and x , although in negative correlation to y.1 2

Plot 6. Coefficient plot: the conclusions drawn from the loading plot were confirmed. Increased additions of x1

and x influenced the outcome in a negative direction. Additions of x had a positive impact. Other factors had2 5

insignificant effects.

Plot 7. Mixture contour plot: the desirable settings of the significant factors x , x and x were unquestionable.1 2 5

The settings of the less influential factors, however, needed to be established as well, since their presence in the
mixture was required. The variables x , x and x were put on the three axes of the mixture contour plot. The4 7 8

Ž . Ž . Ž .other factors were set at their lowest x , x , their highest x and mid level values x , x .1 2 5 3 6

Apparently, low amounts of x would serve the purpose of this mixture. The amounts of x and x have4 7 8

little impact on the result.
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